If you are using a printed copy of this procedure, and not the on-screen version, then you <u>MUST</u> make sure the dates at the bottom of the printed copy and the on-screen version match. The on-screen version of the Collider-Accelerator Department Procedure is the Official Version. Hard copies of all signed, official, C-A Operating Procedures are kept on file in the C-A ESHQ Training Office, Bldg, 911A. | Hard copies of all | | A-A Operating Procedures are kaning Office, Bldg. 911A. | ept on file in the C-A ESHQ | |--------------------|-----------------|---|-----------------------------| | | C-A OPERA | ΓΙΟΝS PROCEDURES MAN | NUAL | | | 7.1.25 Liquid S | Storage Cooldown and Fill Pi | rocedure | | | Т | Fext Pages 2 through 11 | | | | <u>H</u> | and Processed Changes | | | HPC No. | <u>Date</u> | Page Nos. | <u>Initials</u> | Approved: | Signature on File Collider-Accelerator Departs | ment Chairman D | S. Sakry #### 7.1.25 Liquid Storage Cooldown and Fill Procedure ## 1. Purpose This procedure provides instructions for cooling down and filling the liquid storage dewars in three phases. Phase 1 establishes flow in the vacuum jacketed refrigerator-ring (VJRR) line. Phase 2 uses the heat shield line and the supply line from the refrigerator to cool down the liquid dewars. Phase 3 fills the dewars from a bulk helium tanker. ## 2. Responsibilities - 2.1 The shift supervisor or an operator designated by the shift supervisor is responsible for conducting the procedure and providing documentation in the cryogenic control room log and in the cryogenic valve log. - 2.2 Should a problem arise in the process of cooling down or filling the liquid storage area, the shift supervisor shall report to the technical supervisor for instructions before continuing. ## 3. <u>Prerequisites</u> - 3.1 The operator shall be trained by the shift supervisor. - 3.2 Operator shall be familiar with the following drawings: Drawing 3A995064 4:00 Yellow Ring P & ID Drawing 3A995066 6:00 Yellow Ring P & ID Drawing 3A995086 6:00 Yellow Ring P & ID Drawing 3A995086 6:00 Yellow Ring P & ID Drawing 3A995086 6:00 Yellow Ring P & ID Drawing 3A995073 RHIC Helium Storage P & ID Drawing 3A995108 RHIC Magnet Scrub and Warm Up System Block Diagram - 3.3 Operator shall be familiar with the physical location of components on the drawings listed under 3.2. - 3.4 Operator shall be familiar with the control pages found on the CRISP control system. 2 3.5 At the 6:00 Yellow valve box, the following valves shall be CLOSED: H6605A H6620A H6716A H6611A H6701A H6616A H6702A 3.6 At the 6:00 Yellow valve box, the following valves shall be OPEN: H6602A H6745A H6610A 3.7 At the 4:00 Yellow valve box, the following valves shall be CLOSED: H6401A H6411A H6422M H6402A H6416A H6430A 3.8 At the 4:00 Yellow valve box, the following valves shall be OPEN: H6410A H6426M H6415A 3.9 At the liquid storage area, the following valves shall be CLOSED: | H4505A | H9724M | H9752A | |--------|--------|--------| | H4526A | H9725M | H9754M | | H9703A | H9726A | H9775M | | H9706A | H9727M | H9782A | | H9707A | H9733A | H9784M | | H9708M | H9734A | H9785M | | H9709A | H9742A | H9786M | | H9710M | H9743M | H9788M | | H9713A | H9744M | H9793M | | H9714A | H9749M | H9795M | | H9718M | H9750A | | | H9723A | H9751A | | 3.10 At the liquid storage, the following valves shall be OPEN: | H4525A | H9719M | H9741M | |--------|--------|--------| | H9700M | H9722M | H9746M | | H9701M | H9728M | H9755M | | H9702M | H9729M | H9756M | | H9704A | H9731A | H9776M | | H9705A | H9732M | H9777M | | H9711A | H9735M | H9789M | | H9712M | H9736M | H9791M | | H9715M | H9739M | H9794M | | H9716M | H9740M | | 3.11 At the refrigerator, the following valves shall be CLOSED: | H26A | H238M | H776M | |-------|-------|--------| | H33M | H346M | H799M | | H146A | H376M | H809M | | H147A | H399M | H825M | | H157M | H409M | H4644A | | H158M | H413M | H4658A | | H171M | H425M | H4659M | | H187M | H746M | | 3.12 At the refrigerator, the following valves shall be OPEN: | H5M | H156M | H849A | |-----|-------|--------| | H9A | H827M | H4643M | - 3.13 The cool down return line must be available for use at the refrigerator. If it is not available, re-evaluate the situation before executing this procedure. (It is still possible to perform this procedure depending on what portion of the cool down return line is in use.) - 3.14 Verify that flex lines that will be used in the transfer of helium from the bulk helium tanker have been cleaned and dried. - 3.15 In order to cool down the three liquid dewars at the liquid storage area, the RHIC gas storage tanks must have a minimum inventory of 750,000 SCF of helium available. # 4. <u>Precautions</u> - 4.1 All personnel involved in the transfer of liquid from the bulk helium tanker to the RHIC liquid storage dewars shall wear appropriate safety attire for the handling of cryogenic liquids. - 4.2 This procedure provides step-by-step instructions for cooling down and filling liquid storage dewar #1. If cooling down liquid storage dewar # 2 or #3, adjust valve selection appropriately. - 4.3 This procedure uses the 6:00 and 4:00 yellow valve boxes to cool the VJRR line and the supply line. If the 6:00 and 4:00 blue valve boxes are used, adjust valve selection appropriately. The yellow and blue valve boxes are mirror images. # 5. <u>Procedure</u> | | 1. | Verify valve positions as specified in prerequisites 3.5 through 3.12. | |----------|----|--| | Phase 1: | | Establish VJRR shield flow | | | 2. | Establish flow through the VJRR with the valve configuration specified in the prerequisites by opening H25A. | | | 3. | Monitor the temperature of the cooldown return flow at temperature sensor TI8H. When TI8H reaches 200°K, open valve H425M slowly. | | | 4. | Close valve H827M. | | | 5. | Monitor the temperature of the cooldown return flow at TI8H (temperature indicator 8H). When TI8H reads $\sim 120^{\circ} K$ open valve H376M. | | | 6. | Close valves H425M and H156M. Set valve H9A for a flow of 200g/sec. | | | 7. | Monitor the temperature of the cooldown return flow at TI8H (temperature indicator 8H). When TI8H reads ~80°K, go to Phase 2. | | Phase 2 | : | Pre-cool helium dewar(s) with heat shield supply and 4°K supply | |---------|-----|--| | | 8. | At the refrigerator, open valve H849A. | | | 9. | At the refrigerator, close valve H5M. | | | 10. | At the liquid storage area, open or verify open the following valves (See note 4.2): | | | | H4525A
H4526A
H9704A
H9731A | | | 11. | At the 6:00 yellow valve box, open the following valves: | | | | H6601A
H6609M
H6615A
H6616A | | | v | Flow through the dewar will be controlled by opening and adjusting valve H9734A. Adjust H9734A to pressurize and maintain the dewar t 1.5 atmospheres. | ### **Caution 1:** Do not exceed 1.7 atmospheres in the liquid dewar #### **Caution 2:** From this point on, the operator needs to be constantly aware of the condition of the refrigerator. The refrigerator needs to remain at normal operating temperatures throughout the system so as not to move contamination around in the refrigerator. The operator shall pay particular attention to temperature sensor TI3063 on the low pressure return to the compressors. Should TI3063 drop below 270°K, open valves H1103A and H1104M at the refrigerator and close valve H4643A to send flow through the thermax heaters. _____ 13. Monitor the return temperature from dewar #1 by monitoring temperature sensor TT105H. When TT105H reaches 200°K, open valve H4644A. <u>Caution 3:</u> The following bypass changes assume that the "A" string warm turbines are in use. If "B" string turbines are in use, adjust valve selection accordingly. |
14. | Open valve H425M slowly to introduce helium into the return side of heat exchanger 3A. | |---------|--| |
15. | Close valve H849A | | 16. | Continue to monitor the return temperature from dewar #1 by monitoring temperature sensor TT105H. When TT105H reads ~ 80°K, verify that valve H26A is closed. | |
17. | At the 6:00 yellow valve box, close the following valves: | | | H6616A
H6615A | | 18. | Continue to monitor the return temperature from dewar #1 by monitoring temperature sensor TT105H. When TT105H reads less than 80°K, slowly start to open valve H146A at the refrigerator. | | | Warning: | | | As the liquid dewar starts to cool and fill with liquid, the heat load on the refrigerator will change. Continuously monitor the refrigerator and adjust the calorimeter to maintain a balanced heat load. | |
19. | Re-adjust valve H9734A to maintain 1.5 atmospheres in the dewar. | |
20. | Continue to monitor the return temperature from dewar #1 by monitoring temperature sensor TT105H. When TT105H reads less than 50°K, open valve H157M. | | 21. | Close valve H425M. | # **Caution 4:** The following bypass changes assume that the "A" string cold turbines are in use. If "B" string turbines are in use, adjust valve selection accordingly. | | 22. | Continue to monitor the return temperature from dewar #1 by monitoring temperature sensor TT105H. When TT105H reads 7°K, open valves H26A and H409M. | |------|---------|--| | | 23. | Close valve H157M. | | | 24. | Continue to monitor the return temperature from dewar #1 by monitoring temperature sensor TT105H. When TT105H reads 5°K, open valve H33M. | | | 25. | Close valve H409M. | | | 26. | Look for the rate of change in the dewar weight to increase and look for liquid to start to accumulate in the dewar. | | | Periodi | Caution 5: cally check the gas inventory available to insure that the cooldown can be completed (see section 3.15 if in doubt). | | | 27. | Continue to cool the dewar until the dewar weight shows 125 kg. | | | 28. | Throttle H9734A back to maintain minimal flow to the dewar thus preventing increased gas consumption. | | | 29. | Adjust calorimeter to compensate for lack of heat load at the liquid dewar and to maintain balance in the cold end of the refrigerator. | | | 30. | The liquid dewar is now ready for a bulk helium delivery. If a bulk helium tanker is available to fill the dewar, go to Phase 3. | | Phas | e 3: | Dewar(s) fill | | | 31. | Clean and dry flex line that is to be used in the transfer of helium from the bulk helium tanker to the liquid storage dewar. | |
32. | Hook up the fill line from the bulk helium tanker to the liquid dewar's bulk fill line. | |---------|---| |
33. | From the gas storage tanks, purge and connect the line to pressurize the helium bulk tanker. | |
34. | Purge the fill line by opening valve H9785M on dewar #3 and by opening the appropriate purge supply valve on the bulk helium tanker. | |
35. | After the line has been purged, close valve H9785M. | |
36. | Purge and connect the vent lines at the helium bulk tanker. | | 37. | Maintain a 3-5 PSI pressure differential between the liquid storage dewar and the bulk helium tanker by adjusting the regulator that controls the gas pressure going into the helium bulk tanker. | |
38. | Note and record the liquid level in the helium bulk tanker. | |
39. | To pre-cool the bulk fill line, open valve H9785M on dewar #3. | |
40. | Open the supply valve on the bulk helium tanker and pre-cool the bulk fill line until liquid air is visible on the line. Close valve H9785M. | | 41. | Verify that valves H4525A, H9704A, H9731A, and H9732M are open to provide a return path back to the refrigerator. | | 42. | Open valve H9744M on dewar #1 and start filling the dewar. | |
43. | Maintain a 3-5 PSI pressure differential between the liquid storage dewar and the bulk helium tanker by adjusting the regulator that controls the gas pressure going into the helium bulk tanker. | | 44. | Continue filling the liquid storage dewar until the bulk helium tanker is empty. One sign that the bulk helium tanker is empty will be when the pressure between the bulk helium tanker and the liquid storage dewar equalizes and a differential pressure can no longer be maintained. | |
45. | When the helium bulk tanker is empty, close the supply at the | 9 | | 46. | Stop pressurizing the helium bulk tanker with gas from gas storage. | | |----------------------|---|--|--| | | 47. | Through the vent line, reduce the pressure in the bulk helium tanker below 3 PSI by opening either valve H3244M or H3245M depending on where the vent line is attached, and by opening the vent valve on the bulk helium tanker. | | | | 48. | When the helium bulk tanker is below 3 PSI, close H3244M or H3245M and the vent valve on the bulk helium tanker. | | | | 49. | Vent to atmosphere the remaining pressure in the vent line by opening either valve H3243M or H3246M depending on where the vent line is attached. | | | | 50. | Disconnect and cap the vent line. | | | | 51. | Vent the fill line via valve H9785M. | | | | 52. | Disconnect and cap the fill line. | | | | 53. | Before the driver of the bulk helium tanker leaves the site, obtain the weight ticket. | | | | 54. | Offline, condition the flex line used in the transfer to remove the buildup of water in the line and to make it ready for the next fill. | | | <u>Documentation</u> | | | | | | The check-off lines are for place keeping only. The procedure is not to be initialed or signed, it is not a record. | | | The Shift Supervisor shall document the completion of the procedure in the Cryogenics Control Room Log. 6. 6.2 # 7. References - 7.1 Drawing 3A995009 - 7.2 Drawing 3A995064 - 7.3 Drawing 3A995066 - 7.4 Drawing 3A995073 - 7.5 Drawing 3A995084 - 7.6 Drawing 3A995086 - 7.7 Drawing 3A995108 # 8. <u>Attachments</u> None